Simulation of Density-Driven Frictional Downslope Flow in Z-Coordinate Ocean Models
نویسندگان
چکیده
An important component of the ocean’s thermohaline circulation is the sinking of dense water from continental shelves to abyssal depths. Such downslope flow is thought to be a consequence of bottom stress retarding the alongslope flow of density-driven plumes. In this paper the authors explore the potential for explicitly simulating this simple mechanism in z-coordinate models. A series of experiments are performed using a twin densitycoordinate model simulation as a standard of comparison. The adiabatic nature of the experiments and the importance of bottom slope make it more likely that the density-coordinate model will faithfully reproduce the solution. The difficulty of maintaining the density signal as the plume descends the slope is found to be the main impediment to accurate simulation in the z-coordinate model. The results of process experiments suggest that the model solutions will converge when the z-coordinate model has sufficient vertical resolution to resolve the bottom viscous layer and horizontal grid spacing equal to its vertical grid spacing divided by the maximum slope. When this criterion is met it is shown that the z-coordinate model converges to an analytical solution for a simple two-dimensional flow.
منابع مشابه
A Mathematical Model for Indian Ocean Circulation in Spherical Coordinate
In recent years, the Indian Ocean (IO) has been discovered to have a much larger impact on climate variability than previously thought. This paper reviews processes in which the IO is, or appears to be, actively involved. We begin the mathematical model with a pattern for summer monsoon winds. Three dimensional temperature and velocity fields are calculated analytically for the ocean forced by ...
متن کاملSimulation of Lid Driven Cavity Flow at Different Aspect Ratios Using Single Relaxation Time Lattice Boltzmann Method
Abstract Due to restrictions on the choice of relaxation time in single relaxation time (SRT) models, simulation of flows is generally limited base on this method. In this paper, the SRT lattice Boltzmann equation was used to simulate lid driven cavity flow at different Reynolds numbers (100-5000) and three aspect ratios, K=1, 1.5 and 4. The point which is vital in convergence of this scheme ...
متن کاملFriction, Frontogenesis, and the Stratification of the Surface Mixed Layer
The generation and destruction of stratification in the surface mixed layer of the ocean is understood to result from vertical turbulent transport of buoyancy and momentum driven by air–sea fluxes and stresses. In this paper, it is shown that the magnitude and penetration of vertical fluxes are strongly modified by horizontal gradients in buoyancy and momentum. A classic example is the strong r...
متن کاملEffects of different atomistic water models on the velocity profile and density number of Poiseuille flow in a nano-channel: Molecular Dynamic Simulation
In the current study, five different atomistic water models (AWMs) are implemented, In order to investigate the impact of AWMs treatment on the water velocity profile and density number. For this purpose, Molecular dynamics simulation (MDS) of Poiseuille flow in a nano-channel is conducted. Considered AWMs are SPC/E, TIP3P, TIP4P, TIP4PFQ and TIP5P. To assessment of the ability of each model in...
متن کاملA dynamic, embedded Lagrangian model for ocean climate models. Part I: Theory and implementation
A framework for embedding a Lagrangian model within ocean climate models that employ horizontal Eulerian grids is presented. The embedded Lagrangian model can be used to explicitly represent processes that are at the subgrid scale to the Eulerian model. The framework is applied to open ocean deep convection and gravity driven downslope flows, both of which are subgridscale in the present genera...
متن کامل